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Abstract. Conventional control charts are considered satisfied enough to monitor the observations that are assumed to be 
independent and identically distributed (IID). Nevertheless, in real industry environment, the process data exhibits some 
serial dependence or autocorrelation in which the IID assumption is violated. With the presence of autocorrelation, the 
control limits of the control charts should be loosened since the tight control limits can decrease the in-control average run 
length (ARL); thus, lead to a higher false alarm rate. This paper aims to compare the performance and investigate the 
relative effectiveness of three control charts: modified Shewhart (mShewhart), modified EWMA (mEWMA), and 
ARMAST charts, based on the original observations when the process data follows ARMA(1,1) model. The parameters of 
those charts are manipulated to give the in-control ARL of 370. The simulation results shows that the mShewhart chart is 
not completely robust to the deviation from IID assumption for small mean shifts. Although the mEWMA chart is very 
good at detecting small mean shift, the optimal ARMAST chart outperforms the mEWMA chart when there is 
autocorrelation in the process. In addition, the ARMAST chart also surpasses the mShewart in monitoring large mean shift. 

INTRODUCTION 

A standard assumption that is largely cited in justifying the use of traditional control chart is that observations 
taken over time from the process under investigation are independent and identically distributed (IID). However, this 
assumption is often violated due to the presence of autocorrelation or serial dependence that possibly be the result of 
the dynamics, which is inherent to the process [1]. Autocorrelation might be occurred both in process industries and 
in parts industries. In process industries, such as production of foods and beverages, pharmaceuticals, chemicals, and 
petroleum, autocorrelation has long been recognized as a natural phenomenon, where parameters such as temperature 
and pressure differ slowly relative to the rate at which they are measured. On the other hand, only in recent years 
autocorrelation has become an issue in parts industries since processes are sampled more often and it is likely to detect 
autocorrelation that was previously undetected. 

This serial correlation may seriously affect the performance of traditional control charts that are usually developed 
under the IID assumption [2]. Several researches have been conducted to investigate the effect of autocorrelation on 
the performance of traditional control charts. Reference [3] and [4] confirmed that inaccurate conclusions could be 
drawn by using conventional cumulative cum (CUSUM) chart in the presence of data correlation. Next, reference [5] 
showed that the average and median run lengths of CUSUM and exponentially weighted moving average (EWMA) 
charts were sensitive when the IID assumption was violated. Reference [6] revealed that in the presence of moderate 
levels of autocorrelation, an out of control point does not necessarily indicate a process change. On the performance 
of Shewhart control chart, the auto correlated could influence the false alarm rate [7]. Reference [8] proved 
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theoretically that the run length of the autocorrelated process is larger than in the case of independent variables if all 
the autocovariance are greater than or equal to zero. Reference [9] found out that not diagnosing and considering the 
correlation in the data leads to a decrease in the average time to signal as the amount of correlation increases. Resuming 
the aforementioned studies, a typical effect of the presence of autocorrelation is that it produces bias estimators of the 
process standard deviation, and it would make the control limits tighter than expected. The tight control limits can 
cause to decrease the in-control average run length (ARL) leading to a higher false alarm rate. In addition, it can 
increase the time required to detect changes in the process. Therefore, one should not ignore the presence of serial 
correlation when designing the control charts. 

There are two general approaches in constructing control charts to monitor autocorrelated process. The first which 
is proposed by [2], is to fit a time series model to the auto correlated data so that residuals or forecast errors form this 
model can be estimated. Assuming it is a true model, the residuals will be statistically independent; thus, the standard 
assumption is met and any traditional control charts can be applied. However, the residual charts do not have the same 
properties as the traditional charts and may have poor capability to detect the process mean shift [10]. The residuals 
chart also did not perform very well when the processes were positively autocorrelated at the first lag [5], [11]. In 
practice, the estimation process of the model parameters is difficult since the appropriate model to be used may not be 
clear. 

In this paper, it is used another procedure, i.e. applying the original observations rather than the residuals to the 
control charts. It is necessary to adjust both control limits and the techniques for estimating process parameters to 
account for the autocorrelation. A good example is x  charts to monitor autocorrelated data by [12]. Another approach 
is by [13] which proposed a procedure by plotting one-step-ahead EWMA predictions errors on a control chart.  

The objective of this research is to compare and determine the relative effectiveness of the three control charts: 
modified Shewhart, modified EWMA, and ARMAST charts to monitor the mean of autocorrelated processes. The 
ARMA(1,1) model is used due to its characteristics: stationary, as many statistical process control (SPC) systems are 
in practice. It also contains both an autoregressive and a moving average component; hence, the effect of each type of 
parameter could be examined. Such attempt has been conducted by [14] that compared four control charts: Shewhart, 
EWMA, special-cause control (SCC), and common-cause control (CCC) charts. This paper did not consider the SCC 
and CCC charts since the second approach is employed. (The SCC chart is merely a Shewhart chart, but rather than 
plotting the original observations, the residuals are plotted, which are obtained after fitting the process with a time 
series model [2]; and the CCC chart is a chart of forecasted values that are determined by fitting the correlated process 
with a time series model [2].) To contribute, this paper considered ARMAST chart as a new SPC monitoring method. 
In fact, the ARMAST chart has been regarded to outperform SCC chart in the presence of autocorrelation [15]. 

PROCESS MODEL AND THE CONTROL CHARTS 

ARMA(1,1) Process 

Autocorrelated process can be captured using time series models. An important class of time series models are the 
stationary processes, which assume that the process remains in steadiness around a constant mean. If the observation 
at time t is referred as Xt, then the first order of autoregressive moving average process ARMA(1,1) is described as 
follows [16]: 
 aaXX tttt 11)1( , (1) 

where ϕ is the autoregressive parameter, θ is the moving average parameter, μ is the mean of the process, at is the 
random noise term at time t, assumed to be IID with mean 0 and variance of σ2

a. When the process is uncorrelated, 
the values of ϕ and θ are 0. The process is stationary if –1 < ϕ < 1 and invertible if –1 < θ < 1. If ϕ = 0 the process is 
said to be purely moving average (commonly written as MA(1)), and if θ = 0 then the process is purely autoregressive 
or AR(1). The variance (Var(Xt)) of Xt as given by [17] are: 
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Modified Shewhart Chart 

A modified Shewhart (mShewhart) chart is merely a Shewhart chart originally proposed by [18] in which the limits 
are adjusted to the case of autocorrelation. When the IID assumption is violated, the variance of the process is 
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“estimated” badly. Therefore, the variance in (2) is used rather than the variance of the random noise. The process is 
considered to be out-of-control whenever the charting statistics falls outside the control limits of μX ± LXσX, where μX 
and σX are the mean and standard deviation of the process; and LX is a constant, which is selected to maintain the in-
control ARL to the desired value.  

Modified EWMA Chart 

The EWMA chart by [19] is designed to detect small mean shift more quickly than the Shewhart chart. The charting 
statistics which are plotted are not the observations, but a “forecast” of a weighted sum of the current observation and 
the previous periods’ forecast. If the forecast at time t is referred as Ht, then the charting statistics can be written as 
[20]: 
 HXH ttt 1)1( , (3) 

where λ is a smoothing constant which determines the weight given to past observations. When λ is large, relatively 
little weight is given to older observation, vice versa. Note that when λ = 1, the EWMA chart is Shewhart chart. Out-
of-control signal is triggered when Ht falls outside the control limits, that is μ ± LHσH, where σH is standard deviation 
of charting statistics, given as: 

 )1(1
2

2t
XH . (4) 

The term [1 − (1 − λ)2t] in (4) approaches unity as t gets larger, thus the control limits will approach steady-state values: 

 
2XHL . (5) 

Analogue with the mShewhart chart, the main idea behind the modified EWMA (mEWMA) chart when the process 
is autocorrelated is that the charting statistics is compared with the standard deviation of the process; thus, the value 
of σX in (4) and (5) follow the square root of (2). 

ARMAST Chart 

ARMAST chart by [15] is a new charting technique based on the ARMA statistic applied to stationary processes. 
The ARMA statistic Zt can be represented by: 
 ZuXvXvZ tttt 110 , (6) 

where u, v, and v0 are charting parameters with v0 = 1 + v – u for the simplicity of steady state condition. Xt is a 
stationary process follows (1) that is constrained by |v/v0| < 1 and |u| < 1. The constraints are necessitated for designing 
the ARMAST chart to guarantee that Zt is reversible and stationary. It is easy to show that Zt follows ARMA(2,2) 
process when ARMAST chart is applied to ARMA(1,1) model [15]. 

The control limit for ARMAST chart is given by LZσZ, where LZ is a positive real value and σZ is a steady state 
standard deviation of the charting statistics. Therefore, the process is considered to be out-of-control whenever Zt falls 
outside the control limits. The steady state variance of charting statistics is given as follows [21]: 
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, (7) 

where α = uv – v and ρX (1) is first lag correlation coefficient given by: ϕ – θσ2
a/σ2

X. The charting parameters and 
constant LZ could be chosen to achieve a certain in-control ARL. 

RESEARCH DESIGN 

In order to attain a comprehensive view of the effect of the autocorrelation, this research was designed over the 
entire stationary region of ARMA(1,1) model. A five-level full factorial design was used in which values for the two 
model parameters (ϕ and θ) were chosen in the interval of (–1, 1) with the aim of the process to be stationary [22]. 
The parameters must not have equal values or the variance of the process would follow a random noise, see (2). The 
values of the model parameters are selected as follows: (i) strong autocorrelation: ϕ = ± 0.95; (ii) weak autocorrelation: 
ϕ = ± 0.45; (iii) strong moving average: θ = ± 0.90; (iv) weak moving average: θ = ± 0.40; and (v) no autocorrelation 
or no moving average ϕ = θ = 0. 
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A performance measurement for evaluating the aforementioned control charts used in this paper is the ARL, as is 
often utilized in standard SPC procedure, see for example: [11], [14], [15], [21], [23]–[25]. The ARL is defined as the 
average number of points or observations that must be plotted before a point indicates an out-of-control condition [1]. 
The ARL until an alarm is triggered when there is no mean shift in the process is denoted as ARL0 or in-control ARL. 
Contrarily, out-of-control ARL or ARL1 is the ARL until detection of a true mean shift. For a given control charts, it 
is desired to maintain the value of ARL0 to be large when there is no mean shift and small value of ARL1 when there 
is a mean shift in the process.  

In this paper, the ARL0 is maintained at value 370. The rationale behind the use of 370 of the in-control ARL is 
that it gives good results in practice. Longer in-control ARL will result in fewer investigations, but perhaps fewer 
process shifts will be promptly identified; while shorter in-control ARL will result in more investigations for 
assignable causes, and perhaps more false alarms. As a result, for evaluating the control charts’ performance, the 
control charts with the lowest value of ARL1 when the mean shift is occurred is considered as superior. This is 
analogous to matching the type I errors (probability of an out-of-control signal given no shift has occurred) so that the 
type II errors (probability of an in-control observation given a shift of a specific size has occurred) can be compared 
in a more meaningful way. 

Consequently, control charts’ parameters (mEWMA: λ, ARMAST: u and v) and constants (mShewhart: LX, 
mEWMA: LH, ARMAST: LZ) were manipulated so that the ARL0 is retained at value of 370. For mShewhart charts, 
when there is no autocorrelation in the process, the value of LX = 3 is recommended to maintain the ARL0 of 370; 
while there is serial correlation in the process, the values of LX vary depend on the values of ϕ and θ, see [26], [27]. In 
the case of AR(1) model, smaller value of LX has to be assigned for stronger autocorrelated process (bigger value of 
|ϕ|), vice versa [26]. For example, when the coefficient of autocorrelation is 0.95 (ϕ = 0.95, θ = 0), the LX is maintained 
at 2.491 to give the ARL0 of 370. In the case of mEWMA charts, the values of λ and LH vary depend on the parameters 
of the process. (When the observation follows IID assumption, the procedure by [23] could be used for various values 
of λ.) In this study, we fixed the value of λ in the number of 0.2 [28] while the values of LH were manipulated so that 
the effect of LH could be examined. The in-control ARL is maintained at 370. Lastly, the parameters u and v play 
important roles in the performance of the ARMAST chart. Transient and steady state signal-to-noise ratios (RT and 
RS) are used for choosing appropriate parameters of ARMAST chart. When the underlying process follows 
ARMA(1,1), RT and RS are defined as RT = v0μ/σZ and RS = μ/σZ. In this paper, it is used a heuristic algorithm developed 
by [15] to determine the appropriate values of u and v to keep the in-control ARL at the desired value. 

The computation of ARL was determined via simulation. It is assumed that only one observation is available at 
each period and all parameters are assumed to be known exactly. The random noise is assumed to be normally and 
independently distributed (NID) with the mean of 0 and variance of 1 (at ~ NID (0,12)). The observations were 
generated according to (1) with the various parameters of ARMA(1,1) model aforesaid. The process was repeated 
250,000 times with the aim of obtaining the ARL. The standard error used in this study is ±1.96. It is convenient when 
monitoring the process mean to measure the size of the shifts in units of standard deviation of the process [28]. The 
size of mean shifts ranged from 0, 0.5, 1, 2, to 3 standard deviations of the processes. Note that there is no mean shift 
when the value is 0. 

Some authors use MATLAB in estimating the ARL via simulation. However, we developed a Java-based 
application since it gives faster result when dealing with repeating iteration. The computational time for 250,000 
iterations when using Java platform application is about 10 seconds compared with more than an hour when using 
MATLAB. The interface is shown in Fig. 1. The application is available from the authors on request. The algorithms 
are described below. 

Algorithm mShewhart Chart Simulation 

1: Determine the values of , θ, and LX 
2: Calculate σX using the square root of (2) 
3: Calculate the control limits 
4: Generate random number at ~ NID(0,12) 
5: Calculate Xt using (1) 
6:   If Xt falls within the control limits then 
7:  Repeat 4–5 
8: Else 
9:  Calculate the Run Length (RL) 
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FIGURE 1. Interface of Java-based Application for Calculating the ARL 

 
10: End If 
11: Loop 4–10 for 250.000 times 
12: Calculate the ARL 
13: If the ARL does not fall within the desired value then 
14:  Change the value of LX 
15:  Repeat 2–12 
16: Else 
17:  Confirm the appropriate parameters 
18: End If  

Algorithm mEWMA Chart Simulation 

1: Determine the values of , θ, λ, and LH 
2: Calculate σX using the square root of (2) 
3: Calculate σH  
4: Calculate the control limits using (5) 
5: Generate random number at ~ NID(0,12) 
6: Calculate Xt using (1) 
7: Calculate Ht using (3) 
8: If Ht falls within the control limits then 
9:  Repeat 5–7 
10: Else 
11:  Calculate the Run Length (RL) 
12: End If 
13: Loop 5–12 for 250.000 times 
14: Calculate the ARL 
15:  If the ARL does not fall within the desired value then 
16:  Change the value of LH 
17:  Repeat 2–14 
18: Else 
19: Confirm the appropriate parameters 
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20:  End If  

Algortihm ARMAST Chart Simulation 

1: Determine the values of , θ, and LZ 
2:  Determine the initial values of u and v 
3: Specify the mean shift to be detected 
4: Plot RT and RS vs. u and v 
5: If max RT > 4 then 
6:  Confirm the value of u and v to max RT 
7: Else If max RS > 3.5 then 
8:  Check the decreasing rate of RT 
9:  If the rate is high then 
10:  Confirm the value of u and v so that 5.3,5.2SR   
11: Else confirm the value of u and v to max RS 
12: End If 
13: Else 
14:  Confirm the value of u and v 
15: End If 
16: Calculate σX using the square root of (2) 
17: Calculate σZ using (7) 
18: Calculate the control limits 
19: Generate random number at ~ NID(0,12) 
20: Calculate Xt using (1) 
21: Calculate Zt  
22:  If Zt falls within the control limits then 
23:  Repeat 19–21 
24: Else 
25:  Calculate the Run Length (RL) 
26: End If 
27: Loop 19–26 for 250.000 times 
28: Calculate the ARL 
29:  If the ARL does not fall within the desired value then 
30:  Change the value of LZ 
31:  Repeat 2–14 
32: Else 
33:  Confirm the appropriate parameters 
34:  End If 

RESULT AND DISCUSSION 

The simulation results of this study are shown in Table 1. There are 24 scenarios with various parameters of 
ARMA(1,1) models. Five level of mean shifts are also incorporated to give a clear picture of the performance of the 
control charts in monitoring the mean shift when the process is autocorrelated. The fixed value of λ = 0.2 is used when 
dealing with the mEWMA chart; while various values of u and v are used in designing the ARMAST chart. The value 
of constants LX, LH, and LZ are manipulated to give the desired value of ARL0. 

When the process is considered as weak autocorrelation, the mShewhart chart behaves similar with the 
conventional Shewhart chart. The constant of LX = 3 (or approximately near to 3) is set to give the in-control ARL of 
370. The rationale behind this similarity behavior is because the standard deviation of the weak autocorrelation process 
is somewhat alike with when there is no autocorrelation. In the presence of small mean shift, i.e. 0.5σX to 1σX, the out-
of-control ARLs are in the level of 140 to 150 and 40 to 50. It means that the control chart needs about 150 samples 
to give an out-of-control signal when the mean has shifted for 0.5 standard deviation. However, the mShewhart chart 
is very good at detecting the large mean shift. For example, when the mean shifted three standard deviation, only one 
sample is needed to trigger the out-of-control alarm. 

020039-6



TABLE 1. Simulation Result of In-Control ARL and Out-of-Control ARL 

 

Mean 
Shifts 

a. ϕ = –0.95; θ = –0.90 b. ϕ = –0.95; θ = –0.45 c. ϕ = –0.95; θ = 0.00 
mShewhart 
(LX = 2.998) 

mEWMA 
(LH = 
2.770) 

ARMAST 
(u = 0.9; v = 0.1; 
LZ = 2.898) 

mShewhart 
(LX = 2.675) 

mEWMA 
(LH = 
1.443) 

ARMAST  
(u = 0.9; v = 0.0; 
LZ = 2.800) 

mShewhart 
(LX = 2.491) 

mEWMA 
(LH = 
0.998) 

ARMAST
(u = 0.9; v = 0.0
(LZ = 2.731

0 
0.5σX 
1σX 
2σX 
3σX 

370.284 
147.955 

28.792 
1.509 
1.004 

370.484 
32.923 
8.293 
2.671 
1.193 

370.313 
28.332 
8.300 
2.113 

1.0413 

370.648 
158.177 

43.366 
1.037 
1.000 

370.798 
8.218 
2.752 
1.003 
1.000 

370.570 
7.560 
3.184 
1.033 
1.000 

370.456 
144.127 

43.287 
1.000 
1.000 

370.178 
4.161 
1.255 
1.000 
1.000 

370.99
3.78
1.35
1.00
1.00

Mean 
Shifts 

d. ϕ = –0.95; θ = 0.45 e. ϕ = –0.95; θ = 0.90 f. ϕ = –0.40; θ = –0.90 

mShewhart 
(LX = 2.434) 

mEWMA 
(LH = 
0.872) 

ARMAST 
(u = 0.9; v = 0.0; 
LZ = 2.589) 

mShewhart 
(LX = 2.422) 

mEWMA 
(LH = 
0.837) 

ARMAST 
(u = 0.9; v = 0.0; 
LZ = 2.490) 

mShewhart 
(LX = 2.994) 

mEWMA 
(LH = 
3.285) 

ARMAST
(u = 0.9; v = 0.1
LZ = 2.838)

0 
0.5σX 
1σX 
2σX 
3σX 

370.800 
138.243 

42.485 
1.000 
1.000 

370.608 
3.374 
1.011 
1.000 
1.000 

369.508 
3.066 
1.008 
1.000 
1.000 

370.734 
135.879 

42.684 
1.000 
1.000 

369.754 
3.228 
1.000 
1.000 
1.000 

370.961 
2.9564 
1.000 
1.000 
1.000 

369.852 
158.146 

45.659 
5.367 
1.226 

370.451 
49.660 
12.828 
4.068 
2.398 

370.27
40.19
12.50
4.42
2.11

Mean 
Shifts 

g. ϕ = –0.40; θ = –0.45 h. ϕ = –0.40; θ = 0.00 i. ϕ = –0.40; θ = 0.45 

mShewhart 
(LX = 3.000) 

mEWMA 
(LH = 
2.936) 

ARMAST 
(u = 0.9; v = 0.1; 
LZ = 2.882) 

mShewhart 
(LX = 2.989) 

mEWMA 
(LH = 
2.103) 

ARMAST 
(u = 0.9; v = 0.0; 
LZ = 2.791) 

mShewhart 
(LX = 2.956) 

mEWMA 
(LH = 
1.409) 

ARMAST
(u = 0.9; v = 0.0
LZ = 2.942)

0 
0.5σX 
1σX 
2σX 
3σX 

370.687 
154.458 

42.925 
4.880 
1.268 

371.099 
38.423 
10.042 
3.434 
1.997 

370.885 
32.308 
10.383 
3.666 
1.709 

370.473 
152.565 

42.315 
4.456 
1.156 

370.779 
16.995 
5.280 
2.118 
1.229 

370.457 
14.573 
5.708 
2.622 
1.612 

370.485 
145.082 

41.320 
4.297 
1.052 

370.344 
6.679 
2.814 
1.273 
1.006 

370.72
6.17
1.97
1.41
1.01

Mean 
Shifts 

j. ϕ = –0.40; θ = 0.90 k. ϕ = 0.00; θ = –0.90 l. ϕ = 0.00; θ = –0.45 

mShewhart 
(LX = 2.940) 

mEWMA 
(LH = 
1.167) 

ARMAST 
(u = 0.9; v = 0.1; 
LZ = 2.953) 

mShewhart 
(LX = 2.981) 

mEWMA 
(LH = 
3.722) 

ARMAST 
(u = 0.9; v = 0.1; 
LZ = 2.773) 

mShewhart 
(LX = 2.992) 

mEWMA 
(LH = 
3.533) 

ARMAST
(u = 0.9; v = 0.1
LZ = 2.804)

0 
0.5σX 
1σX 
2σX 
3σX 

370.994 
140.348 

40.700 
4.325 
1.015 

370.126 
4.657 
2.211 
1.069 
1.000 

369.612 
3.895 
2.045 
1.054 
1.000 

370.104 
163.049 

50.336 
8.441 
2.444 

370.323 
67.084 
17.559 
5.313 
3.092 

370.533 
52.610 
16.081 
5.667 
3.216 

370.386 
160.526 

47.634 
7.522 
2.276 

370.163 
59.638 
15.566 
4.893 
2.898 

370.71
47.63
14.63
5.26
2.99

Mean 
Shifts 

m. ϕ = 0.00; θ = 0.45 n. ϕ = 0.00; θ = 0.90 o. ϕ = 0.40 ; θ = –0.90 

mShewhart 
(LX = 2.992) 

mEWMA 
(LH = 
1.880) 

ARMAST 
(u = 0.9;  v = 
0.0; LZ = 
2.867) 

mShewhart 
(LX = 2.981) 

mEWMA 
(LH = 
1.356) 

ARMAST 
(u = 0.8; v = 0.0; 
LZ = 2.999) 

mShewhart 
(LX = 2.940) 

mEWMA 
(LH = 
4.387) 

ARMAST
(u = 0.9; v = 0.2
LZ = 2.769)

0 
0.5σX 
1σX 
2σX 
3σX 

370.959 
153.138 

42.488 
5.655 
1.760 

371.293 
12.449 
4.577 
2.219 
1.568 

370.809 
11.026 
4.887 
2.503 
1.822 

370.789 
149.707 

41.852 
5.693 
1.639 

370.832 
6.005 
2.957 
1.657 
1.158 

370.543 
6.002 
2.957 
1.658 
1.161 

370.283 
173.812 

57.143 
11.244 
4.335 

370.184 
98.288 
27.940 
8.033 
4.621 

370.96
82.52
25.14
8.14
4.45

Mean 
Shifts 

p. ϕ = 0.40; θ = –0.45 q. ϕ = 0.40; θ = 0.00 r. ϕ = 0.40; θ = 0.45 

mShewhart 
(LX = 2.956) 

mEWMA 
(LH = 
4.289) 

ARMAST 
(u = 0.9; v = 0.2; 
LZ = 2.791) 

mShewhart 
(LX = 2.989) 

mEWMA 
(LH = 
3.834) 

ARMAST 
(u = 0.9; v = 0.2; 
LZ = 2.866) 

mShewhart 
(LX = 3.000) 

mEWMA 
(LH = 
2.708) 

ARMAST
(u = 0.9; v = 0.1
LZ = 2.910)

0 
0.5σX 
1σX 
2σX 
3σX 

370.773 
171.128 

55.628 
10.896 
4.179 

370.456 
93.417 
26.341 
7.703 
4.492 

370.515 
79.438 
24.059 
7.848 
4.351 

370.572 
163.603 

50.579 
9.452 
3.741 

370.728 
74.112 
20.183 
6.410 
3.933 

369.484 
64.259 
19.515 
6.705 
3.825 

370.829 
155.665 

44.718 
7.538 
3.163 

370.297 
32.008 
9.456 
4.051 
2.820 

369.64
28.14
10.02
4.42
2.90

Mean 
Shifts 

s. ϕ = 0.40; θ = 0.90 t. ϕ = 0.95; θ = –0.90 u. ϕ = 0.95; θ = –0.45 

mShewhart 
(LX = 2.994) 

mEWMA 
(LH = 
1.665) 

ARMAST 
(u = 0.9; v = 0; 
LZ = 2.988) 

mShewhart 
(LX = 2.422) 

mEWMA 
(LH = 
5.940) 

ARMAST 
(u = 0.8; v = 

0;  
LZ = 2.170) 

mShewhart 
(LX = 2.434) 

mEWMA 
(LH = 
5.940) 

ARMAST
(u = 0.9; v = 0
LZ = 2.026)

0 
0.5σX 
1σX 
2σX 
3σX 

370.700 
152.535 

42.981 
6.843 
2.975 

370.427 
9.094 
4.480 
2.580 
1.960 

369.604 
7..451 
4.208 
2.556 
1.973 

370.951 
256.674 
136.155 

51.212 
28.193 

370.955 
252.097 
132.048 

50.818 
28.950 

370.974 
254.029 
133.326 

51.020 
28.975 

369.929 
256.409 
135.447 

51.168 
28.136 

370.488 
252.353 
131.660 

50.864 
28.877 

370.70
246.49
127.78

50.55
30.054
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TABLE 1. (Continued) 

 
On the other hand, in the presence of strong positive autocorrelation, the constants LX have to be loosened to give 

the ARL0 of 370. This happens because the process standard deviation is very large compared with when the process 
has no serial correlation. (When ϕ = 0.95 and θ = –0.9, the standard deviation is 6.0085.) A small mean shift of 0.5 
standard deviation gives the value of ARL1 more than 200. It is very undesired since the chart has already triggered 
an out-of-control alarm after 200 samples! The situation is opposed from the weak autocorrelation in the presence of 
large mean shift. Although Shewhart chart is capable of detecting large mean shift in the process, yet in strong positive 
autocorrelation, this capability is considered not appropriate anymore. For example, when three standard deviation of 
mean shift occurred, the control chart can detect the out-of-control condition after more than 25 samples! 

For the mEWMA chart, as has been said before, the parameter λ is fixed at the value of 0.2 to see the effect of 
manipulating the constant LH on the performance of the chart in the presence of autocorrelation. It is clear that the 
chart has better ability to detect small mean shift than mShewhart chart. For example, in the strong negative 
autocorrelation and moving average (ϕ = –0.95; θ = –0.9), the out-control ARL for detecting mean shift of 0.5σX is 
32.9. The value is smaller when it is compared with mShewhart. (The ARL1 is 147.96.) Although the value of ARL1 
is still smaller compared with mShewhart, the difference is slightly not huge when the process is considered as strong 
positive autocorrelation; say when ϕ = 0.95 and θ = 0.0, the out-of-control ARLs of mEWMA for 0.5σX and 1σX are 
250 and 130 respectively (the ARL1 of mShewhart for the same scenarios are 255 and 134). Oppositely, for examining 
large mean shift, the mShewhart chart is considered better than the mEWMA chart, especially for the weak 
autocorrelation. 

Designing the ARMAST chart is tricky, since it has more parameters to be manipulated. When the optimal 
parameters have been found, the ARMAST chart performs better than other charts being investigated. In the case of 
weak autocorrelation, the out-of-control ARLs for detecting small mean shift are smaller than any other charts, say 
when ϕ = 0.40 and θ = 0.0, the ARL1 for mean shift of 0.5σX is 64, smaller than mEWMA chart of 74 and mShewhart 
of 163. In the case of large mean shift, the chart is comparable with others, say for the same scenario, the ARL1 for 
mean shift of 3σX is 3.8, while mShewhart is 3.7 and mEWMA is 3.9. 

CONCLUSION AND FUTURE RESEARCH DIRECTION 

This paper investigated the performance of three control charts, i.e. mShewhart, mEWMA, and ARMAST charts, 
in the presence of autocorrelation in the data. The simulation result which is shown in Table 1 shows that the 
mShewhart chart performs well when the large mean shift is occurred, but worst in detecting the small mean shift. On 
the other hand, mEWMA chart has a better ability in detecting small mean shift than mShewhart chart but worse in 
large mean shift. Among others, the well-designed ARMAST chart will be best performed, both in large and small 
mean shift. However, finding optimal parameters of ARMAST chart is somewhat difficult. The heuristic approach by 
[15] for obtaining the optimal parameters of ARMAST chart should be studied further. 

The computational aspect in estimating the ARL of the control charts via simulation also should be examined. The 
simulation cannot give the precise value of ARL; also it spends plenty of time in obtaining the estimated ARL. The 
Markov chain approach, however, could be used in estimating the ARL. In addition to the Markov chain approach, 
the integral equation method is also a common method used to approximate the ARL [30]. However, the later cannot 
be used with certain kinds of control problems. For example, it cannot be used to calculate the ARL and the distribution 
of run-lengths [31], and therefore, the Markov chain approach gains its popularity. It has been applied in estimating 
the Markovian-based charting statistics, such as CUSUM [32] and EWMA [23]. Extending Markov chain approach 
in estimating the ARL when the IID assumption is violated will be an interesting area to be pursued. 

Mean 
Shifts 

v. ϕ = 0.95 ; θ = 0.00 w. ϕ = 0.95 ; θ = 0.45 x. ϕ = 0.95 ; θ = 0.90 

mShewhart 
(LX = 2.491) 

mEWMA 
(LH = 
5.908) 

ARMAST 
(u = 0.9; v = 0.9; 
LZ = 2.491) 

mShewhart 
(LX = 2.675) 

mEWMA 
(LH = 
5.686) 

ARMAST 
(u = 0.9; v = 0.1; 
LZ = 2.131) 

mShewhart 
(LX = 2.998) 

mEWMA 
(LH = 
3.331) 

ARMAST
(u = 0.9; v = 0.1
LZ = 2.490)

0 
0.5σX 
1σX 
2σX 

3σX 

370.627 
255.862 
134.394 

50.593 
28.027 

370.026 
250.189 
130.338 

50.085 
28.462 

370.548 
254.624 
134.213 

50.788 
28.028 

370.935 
247.072 
126.655 

47.550 
26.736 

370.621 
239.019 
119.871 

45.921 
26.508 

370.879 
234.173 
116.123 

45.612 
27.385 

371.583 
179.933 

73.374 
28.954 
18.486 

370.162 
89.645 
37.038 
18.262 
13.020 

370.40
80.16
35.24
18.72
13.80
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